首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25373篇
  免费   6104篇
  国内免费   2912篇
化学   11702篇
晶体学   762篇
力学   1854篇
综合类   217篇
数学   1524篇
物理学   18330篇
  2024年   34篇
  2023年   255篇
  2022年   542篇
  2021年   617篇
  2020年   830篇
  2019年   685篇
  2018年   735篇
  2017年   955篇
  2016年   1161篇
  2015年   1050篇
  2014年   1586篇
  2013年   2532篇
  2012年   1850篇
  2011年   1786篇
  2010年   1408篇
  2009年   1619篇
  2008年   1863篇
  2007年   1805篇
  2006年   1659篇
  2005年   1478篇
  2004年   1314篇
  2003年   1194篇
  2002年   962篇
  2001年   913篇
  2000年   839篇
  1999年   678篇
  1998年   626篇
  1997年   545篇
  1996年   465篇
  1995年   470篇
  1994年   423篇
  1993年   311篇
  1992年   265篇
  1991年   174篇
  1990年   131篇
  1989年   122篇
  1988年   104篇
  1987年   82篇
  1986年   67篇
  1985年   59篇
  1984年   52篇
  1983年   15篇
  1982年   39篇
  1981年   14篇
  1980年   20篇
  1979年   16篇
  1978年   8篇
  1977年   4篇
  1973年   7篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 24 毫秒
1.
低维硅锗材料是制备纳米电子器件的重要候选材料,是研发高效率、低能耗和超高速新一代纳米电子器件的基础材料之一,有着潜在的应用价值。采用密度泛函紧束缚方法分别对厚度相同、宽度在0.272 nm~0.554 nm之间的硅纳米线和宽度在0.283 nm~0.567 nm之间的锗纳米线的原子排布和电荷分布进行了计算研究。硅、锗纳米线宽度的改变使原子排布,纳米线的原子间键长和键角发生明显改变。纳米线表层结构的改变对各层内的电荷分布产生重要影响。纳米线中各原子的电荷转移量与该原子在表层内的位置相关。纳米线的尺寸和表层内原子排列结构对体系的稳定性产生重要影响。  相似文献   
2.
采用基于密度泛函理论的第一性原理赝势平面波方法对Sc、Ce单掺和共掺后CrSi2的几何结构、电子结构、复介电函数、吸收系数和光电导率进行了计算。结果表明:Sc、Ce掺杂CrSi2的晶格常数增大,带隙变小。本征CrSi2的带隙为0.386 eV,Sc、Ce单掺及共掺CrSi2的禁带宽度分别减小至0.245 eV、0.232 eV、0.198 eV,费米能级均向低能区移动进入价带。由于Sc的3d态电子和Ce的4f态电子的影响,Sc、Ce掺杂的CrSi2在导带下方出现了杂质能级。掺杂后的CrSi2介电函数虚部第一介电峰峰值增加且向低能方向移动,说明Sc、Ce掺杂使得CrSi2在低能区的光跃迁强度增强,Sc-Ce共掺时更明显。Sc、Ce掺杂的CrSi2吸收边在低能方向发生红移,在能量大于21.6 eV特别是在位于31.3 eV的较高能量附近,本征CrSi2几乎不吸收光子,Sc单掺和Sc-Ce共掺CrSi2吸收光子的能力有所增强,并在E=31.3 eV附近形成了第二吸收峰。说明掺杂Sc、Ce改善了CrSi2对红外和较高能区光子的吸收。在小于3.91 eV的低能区掺杂后的CrSi2光电导率增加。在20.01 eV<E<34.21 eV时,本征CrSi2光电导率为零,但Sc、Ce掺杂后的体系不为零,掺杂拓宽了CrSi2的光响应范围。研究结果为CrSi2基光电器件的应用与设计提供了理论依据。  相似文献   
3.
The commonly used multi-center initiation methods always lead to the formation of quantities of homopolymer in the surface tailoring based on reverse atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. In this study, a monocenter redox pair constructed of silica bearing tert-butyl hydroperoxide groups and ascorbic acid (SiO2-TBHP/AsAc) was applied to substitute the commonly used initiation method of R-supported RAFT grafting polymerization. All the propagating radicals were restricted on the surface of solid particles during the whole procedure theoretically, resulting in a higher grafting efficiency of 95.1% combined with the “controllable” feature at 10 h. This redox pair was also used to initiate the reverse ATRP in miniemulsion successfully with a grafting efficiency of 86.3% at 10 h. The grafting efficiency obtained under this monocenter initiation method was significantly higher than that of the frequently reported surface modification by reverse ATRP and RAFT polymerization. In addition, the high-efficient surface tailoring was traced and confirmed by nuclear magnetic resonance, Fourier transform infrared, X-ray photoelectron spectroscopy, thermogravimetric analysis, transmission electron microscopy, and other analysis tests. The advantage of this monocenter redox pair will open a new avenue for the potential “high-efficient” surface tailoring of various materials.  相似文献   
4.
Although both ultraviolet (UV) radiation and ultrasound (US) treatment have their capabilities in microbial inactivation, applying any one method alone may require a high dose for complete inactivation, which may affect the sensory and nutritional properties of pineapple juice. Hence, this study was intended to analyse and optimise the effect of combined US and UV treatments on microbial inactivation without affecting the selected quality parameters of pineapple juice. US treatment (33 kHz) was done at three different time intervals, viz. 10 min, 20 min and 30 min., after which, juice samples were subjected to UV treatment for 10 min at three UV dosage levels, viz. 1 J/cm2, 1.3 J/cm2, and 1.6 J/cm2. The samples were evaluated for total colour difference, pH, total soluble solids (TSS), titrable acidity (TA), and ascorbic acid content; total bacterial count and total yeast count; and the standardization of process parameters was done using Response Surface Methodology and Artificial Neural Network. The results showed that the individual, as well as combined treatments, did not significantly impact the physicochemical properties while retaining the quality characteristics. It was observed that combined treatment resulted in 5 log cycle reduction in bacterial and yeast populations while the individual treatment failed. From the optimization studies, it was found that combined US and UV treatments with 22.95 min and1.577 J/cm2 ensured a microbiologically safe product while retaining organoleptic quality close to that of fresh juice.  相似文献   
5.
This paper presents the effect of insecticides on the composition of the surface compounds of one of the most harmful insects, Tenebrio molitor, by analysis using GC–MS. As a result of the use of insecticides, the composition of the chemical compounds on the surface of insects changes, depending on the insecticides used. The most numerous groups of the marked compounds were fatty acids, alkanes, esters and sterols. The content of the identified compounds in the larvae increased at both 24 and 48 h after the application of insecticides, in comparison with the control samples. The content of identified compounds in the samples taken from the females increased 24, 48 and 72 h after the application of insecticides in comparison with the control samples. By contrast, in samples prepared from males, the content of identified compounds decreased 24 h after the application of insecticides, compared with the control samples. The highest content of chemical compounds was for fatty acids and alkanes after the use of insecticides. The content of fatty acids after the application of the insecticide with deltamethrin was 62.1 ± 3.3–466.9 ± 5.9 μg/g, and after the application of the insecticide with cyfluthrin was 49.9 ± 1.9–458.3 ± 4.2 μg/g. However, the content of alkanes after the use of deltamethrin was 115.6 ± 4.2–4672.0 ± 32.1 μg/g, and after the use of cyfluthrin was 189.4 ± 3.8–3975.0 ± 10.2 μg/g.  相似文献   
6.
Surface plasmon can trigger or accelerate many photochemical reactions, especially useful in energy and environmental industries. Recently, molecular adsorption has proven effective in modulating plasmon-mediated photochemistry, however the realized chemical reactions are limited and the underlying mechanism is still unclear. Herein, by using in situ dark-field optical microscopy, the plasmon-mediated oxidative etching of silver nanoparticles (Ag NPs), a typical hot-hole-driven reaction, is monitored continuously and quantitatively. The presence of thiol or thiophenol molecules is found essential in the silver oxidation. In addition, the rate of silver oxidation is modulated by the choice of different thiol or thiophenol molecules. Compared with the molecules having electron donating groups, the ones having electron accepting groups accelerate the silver oxidation dramatically. The thiol/thiophenol modulation is attributed to the modulation of the charge separation between the Ag NPs and the adsorbed thiol or thiophenol molecules. This work demonstrates the great potential of molecular adsorption in modulating the plasmon-mediated photochemistry, which will pave a new way for developing highly efficient plasmonic photocatalysts.  相似文献   
7.
Conjugated polymers feature promising structure and properties for photocatalytic water splitting. Herein, a hydrolysis strategy was demonstrated to rationally modulate the surface hydrophilicity and band structures of conjugated poly-benzothiadiazoles. High hydrophilicity not only enhances the dispersions of polymeric solids in an aqueous solution but also reduces the absorption energy of water molecules. Besides, both theoretical and experimental results reveal that a more positive valence band potential is generated, which contributes to enhancing the photocatalytic water oxidation performance. Accordingly, the surface-modified conjugated polymers show largely promoted photocatalytic water oxidation activities by deposition of cobalt oxides as cocatalysts.  相似文献   
8.
WS2由于其优异的物理和光电性质引起了广泛关注。本研究基于第一性原理计算方法,探索了本征单层WS2及不同浓度W原子替位钇(Y)掺杂WS2的电子结构和光学特性。结果表明本征单层WS2为带隙1.814 eV的直接带隙半导体。进行4%浓度(原子数分数)的Y原子掺杂后,带隙减小为1.508 eV,依旧保持着直接带隙的特性,随着Y掺杂浓度的不断增大,掺杂WS2带隙进一步减小,当浓度达到25%时,能带结构转变为0.658 eV的间接带隙,WS2表现出磁性。适量浓度的掺杂可以提高材料的导电性能,且掺杂浓度增大时,体系依旧保持着透明性并且在红外光和可见光区对光子的吸收能力、材料的介电性能都有着显著提高。本文为WS2二维材料相关光电器件的研究提供了理论依据。  相似文献   
9.
A new series of azomethine-functionalized compounds was synthesized from the condensation of 2-hydroxy-1,3-propanediamine and 2-thienylcarboxaldehydes in the presence of a drying agent. The derivatives were spectroscopically characterized by NMR, LC-MS, UV/Vis, IR and elemental analysis. Variable temperature 1H-NMR (−60 to +60 °C) was performed to investigate the effect of solvent polarity; the capability of solvent to form H-bond was found to dramatically influencing the tautomerization process of the desired structures. The calculated thermochemical parameters (ΔH298, ΔG298 and ΔS298) at DFT and MP2 levels of theory explained that 3 b exists in equilibrium with two tautomers. The basis of the electronic absorptions was pursued through Time-Dependent Density-Functional Theory (TD-DFT). Analysis of the structural surfaces was inspected and the molecular electrostatic potential (MEP) demonstrated that the three functionalized compounds were relatively analogous in the electronic distributions. Furthermore, the electrophilic and nucleophilic centers lying on the molecular surfaces were probably playing a key-role in stabilizing the compounds through the nonclassical C−H⋅⋅⋅π interactions and hydrogen bonding. The impact of solvent polarity on absorption spectra were investigated via solvatochromic shifts. For instance, compound 3 c displayed a gradual shift of the maximum absorption to the red area when the solvent polarity was increased, recording a 21 nm of bathochromic shift. In contrast, no significant solvent-effect on 3 a and 3 b was observed. The solvation relation was pursued between Gutmann's donicity numbers the experimental λmax; exhibited almost positive linear performance with a minor oscillation, that ascribe to the possible weak interface between the molecules of solute and designated solvents. The bandgap energy of all products were assessed experimentally using optical absorption spectra following Tauc approach, giving −4.050 ( 3 a ), −3.900 ( 3 b ) and −3.210 ( 3 c ) eV. However, the ΔE were computationally figured out from TD-DFT simulation to be −4.258 ( 3 a ), −4.022 ( 3 b ) and −3.390 ( 3 c ) eV.  相似文献   
10.
Surface-tethered polymers are unique molecular architectures that have been recently used in advanced sensors, electronics and biomedical applications. However, techniques for characterizing these materials in their surface-tethered form remain limited. The incorporation of luminescent functionality into these materials has enabled new characterization methods, while also unlocking new applications in optoelectronics, stenography and sensing. Micron-scale photolithography techniques have recently enabled the preparation of high-resolution patterns, as well as architectures with unique photophysical properties. Herein, we provide an overview of the techniques used to prepare luminescent polymer brush materials and their applications in stimuli-responsive sensors, cell adhesion materials, and optoelectronics. We also provide our perspective on the promising future uses of surface-tethered polymers, as well as the short-term challenges and opportunities in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号